Treatment accuracy without rotational setup corrections in intracranial SRT
نویسندگان
چکیده
The aim of this study was to evaluate the impact of actual rotational setup errors on dose distributions in intracranial stereotactic radiotherapy (SRT) with different alternatives for treatment position selection. A total of 38 SRT fractions from 18patients were retrospectively evaluated with rotational setup errors obtained from actual treatments. The planning computed tomography (CT) images were rotated according to online cone-beam CT (CBCT) images and the dose distribution was recalculated to the rotated CT images using three different patient positionings derived from: 1) an automatic 6D match neglecting rotation correction (Auto6D); 2) an automatic 3D match (Auto3D); and 3) a manual 3D match from actual treatment (Treat3D). The mean conformity index (CI) was 0.92 for the original plans and 0.91 for the Auto6D plans. The mean CI decreased significantly (p < 0.01) to 0.78 and 0.80 for the Auto3D and the Treat3D plans, respectively. The mean minimum dose of the planning target volume (PTVmin) was 91.9% of the prescribed dose for the original plans and 92.1% for the Auto6D plans, while for the Auto3D and the Treat3D plans PTVmin decreased significantly (p < 0.01) to 78.9% and 80.2%, respectively. No significant differences were seen between the Auto6D and the original treatment plans in terms of the dose parameters. However, the Auto3D and the Treat3D plans were statistically significantly inferior (p < 0.01) to the Auto6D and the original plans. In addition, a significant negative correlation (p < 0.01, |r| > 0.38) was found in the Auto3D and the Treat3D cases between the rotation error and CI, PTVmin or minimum dose of gross tumour volume. In SRT, a treatment plan of comparable quality to 6D rotation correction can be achieved by using 6D registration without a rotational correction in the selection of patient positioning. This was demonstrated for typical rotation errors seen in clinical practice.
منابع مشابه
An immobilization and localization technique for SRT and IMRT of intracranial tumors
A noninvasive localization and immobilization technique that facilitates planning and accurate delivery of both intensity modulated radiotherapy (IMRT) and linac based stereotactic radiotherapy (SRT) of intracranial tumors has been developed and clinically tested. Immobilization of a patient was based on a commercially available Gill-Thomas-Cossman (GTC) relocatable frame. A stereotactic locali...
متن کاملFrameless fractionated stereotactic radiation therapy of intracranial lesions: impact of cone beam CT based setup correction on dose distribution
BACKGROUND The purpose of this study was to evaluate the impact of Cone Beam CT (CBCT) based setup correction on total dose distributions in fractionated frameless stereotactic radiation therapy of intracranial lesions. METHODS Ten patients with intracranial lesions treated with 30 Gy in 6 fractions were included in this study. Treatment planning was performed with Oncentra® for a SynergyS® (...
متن کاملeNAL++: a new and effective off‐line correction protocol for rotational setup errors when using a robotic couch
Cone-beam CTs (CBCTs) installed on a linear accelerator can be used to provide fast and accurate automatic six degrees of freedom (6DoF) vector displacement information of the patient position just prior to radiotherapy. These displacement corrections can be made with 6DoF couches, which are primarily used for patient setup correction during stereotactic treatments. When position corrections ar...
متن کاملDosimetric effects of positioning shifts using 6D‐frameless stereotactic Brainlab system in hypofractionated intracranial radiotherapy
Dosimetric consequences of positional shifts were studied using frameless Brainlab ExacTrac X-ray system for hypofractionated (3 or 5 fractions) intracranial stereo-tactic radiotherapy (SRT). SRT treatments of 17 patients with metastatic intracranial tumors using the stereotactic system were retrospectively investigated. The treatments were simulated in a treatment planning system by modifying ...
متن کاملQuantitative evaluation of patient setup uncertainty of stereotactic radiotherapy with the frameless 6D ExacTrac system using statistical modeling
The purpose of this study is to evaluate patient setup accuracy and quantify indi-vidual and cumulative positioning uncertainties associated with different hardware and software components of the stereotactic radiotherapy (SRS/SRT) with the frameless 6D ExacTrac system. A statistical model is used to evaluate positioning uncertainties of the different components of SRS/SRT treatment with the Br...
متن کامل